DRC Research

DRC has a well-established research tradition, built on a strong foundation in the social sciences; rich interdisciplinary research; a capacity for quick response field research; and a culture of collaboration between faculty, staff, and graduate and undergraduate students. Building on this rich history, DRC continuously enhances its research activities.

DRC Research

DRC has a well-established research tradition, built on a strong foundation in the social sciences; rich interdisciplinary research; a capacity for quick response field research; and a culture of collaboration between faculty, staff, and graduate and undergraduate students. Building on this rich history, DRC continuously enhances its research activities.

DRC Research

DRC has a well-established research tradition, built on a strong foundation in the social sciences; rich interdisciplinary research; a capacity for quick response field research; and a culture of collaboration between faculty, staff, and graduate and undergraduate students. Building on this rich history, DRC continuously enhances its research activities.

DRC Research

DRC has a well-established research tradition, built on a strong foundation in the social sciences; rich interdisciplinary research; a capacity for quick response field research; and a culture of collaboration between faculty, staff, and graduate and undergraduate students. Building on this rich history, DRC continuously enhances its research activities.

DRC Research 

DRC projects have been supported by diverse sources, including: National Science Foundation (NSF), U.S. Department of Homeland Security (DHS), U.S. Department of Health and Human Services (DHHS), U.S. Department of Defense (DOD), National Institute of Standards and Technology (NIST), Center for Disease Control and Prevention (CDC), U.S. Department of Transportation (DoT), U.S. Geological Survey (USGS), Earthquake Engineering Research Institute (EERI), Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA) Sea Grant Program, Social Science Research Council (SSRC), and Public Entity Risk Institute (PERI).

DRC Director Tricia Wachtendorf presenting "Improvising Disaster" at the Resilient Calgary Symposium at Mount Royal University, in Calgary, Canada. (05/18/2017)
Research Spotlight

image

Coastal Hazards, Equity, Economic Prosperity and Resilience (CHEER)

DURATION: September 1, 2022 –
RESEARCHERS: Rachel Davidson, Sarah DeYoung, Joseph Trainor, A.R. Siders[/if 449]

FUNDING: National Science Foundation

PROJECT DESCRIPTION:
The UD-led hub — Coastal Hazards, Equity, Economic prosperity and Resilience (CHEER) — is one of five NSF-funded projects announced recently as part of the agency’s Coastlines and People program, which is concentrating its research efforts to protect the natural, social and economic resources of U.S. coasts, and to help create more resilient coastal communities.

This five-year project will be led by Rachel Davidson, a core DRC faculty member and UD professor of civil and environmental engineering. Co-principal investigators include Sarah DeYoung, core DRC faculty member and associate professor of sociology and criminal justice at UD; Linda Nozick, professor and director of civil and environmental engineering at Cornell University; Brian Colle, professor and division head of atmospheric sciences at Stony Brook University; and Meghan Millea, professor of economics at East Carolina University.

READ MORE

image

COVID-19: Community Impacts and Adaptation To Crisis: Delawareans Living With HIV/Aids

RESEARCHERS: Tricia Wachtendorf

FUNDING: Internally Funded, Delaware HIV Consortium

PROJECT DESCRIPTION:
The crisis surrounding COVID-19 impacted communities across the globe. Appreciating that disasters have differential impacts on those affected, this study examined the impact the crisis had on Delawareans living with HIV/AIDS. The study explored issues of preparedness, response, adaptation, and decision-making, among other social consequences, as well as challenges related to health, housing, finances, and support. Over 50 interviews were conducted with clients of the Delaware HIV Consortium to better understand their experiences and needs over the course of the pandemic.

READ MORE

Research Projects

image

Coastal Hazards, Equity, Economic Prosperity and Resilience (CHEER)

DURATION: September 1, 2022 –
RESEARCHERS: Rachel Davidson, Sarah DeYoung, Joseph Trainor, A.R. Siders

FUNDING: National Science Foundation

PROJECT DESCRIPTION:
The UD-led hub — Coastal Hazards, Equity, Economic prosperity and Resilience (CHEER) — is one of five NSF-funded projects announced recently as part of the agency’s Coastlines and People program, which is concentrating its research efforts to protect the natural, social and economic resources of U.S. coasts, and to help create more resilient coastal communities.

This five-year project will be led by Rachel Davidson, a core DRC faculty member and UD professor of civil and environmental engineering. Co-principal investigators include Sarah DeYoung, core DRC faculty member and associate professor of sociology and criminal justice at UD; Linda Nozick, professor and director of civil and environmental engineering at Cornell University; Brian Colle, professor and division head of atmospheric sciences at Stony Brook University; and Meghan Millea, professor of economics at East Carolina University.

READ MORE

image

Infrastructure System Damage Modeling with Data from the 2010-2011 Christchurch, New Zealand Earthquakes

RESEARCHERS: Rachel Davidson

FUNDING: Internally Funded

PROJECT DESCRIPTION:
The goal of this research is to develop new infrastructure system damage models using statistical methods that are new for this application. Specifically, we are analyzing a large, uniquely comprehensive dataset of water supply system damage from the 2010-2011 Christchurch, New Zealand earthquakes. We are comparing generalized linear models, boosted regression trees, and random forest models to see which provide the best fit to the data and the best predictive power. The research aims to improve prediction of water supply system pipeline damage in future earthquakes and improve methods for modeling lifeline damage in extreme events in general. Co-Principal Investigators: Matthew Hughes (University of Canterbury) and Misko Cubrinovski (University of Canterbury)

image

NFWF: Resilience Through Regeneration in Northeast Wilmington

DURATION: January 1, 2020 – December 31, 2020
RESEARCHERS: Jennifer Horney

FUNDING: National Fish and Wildlife Foundation

PROJECT DESCRIPTION:
The project uses innovative “resilience through regeneration” design techniques that capitalize on the reuse of vacant and abandoned properties for green infrastructure and use landscape performance measures to quantify resilience and flood risk reduction benefits. Together with hydrologic and flood resilience, social, economic, and public health performance of designs will be measured and reported to the community based on their expressed priorities for improvements to public health, recreational access, and economic opportunities and to federal, state, and local stakeholders that will be involved in future funding, permitting, and implementation of the resilient masterplan for Northeast Wilmington.

image

NSF COLLAB RSH CRISP TYPE 2: Defining and Optimizing Societal Objectives for the Earthquake Risk Management of Critical Infrastructure

DURATION: September 1, 2017 – August 31, 2021
RESEARCHERS: Rachel Davidson, James Kendra

PROJECT DESCRIPTION:
Critical infrastructure systems, such as electric power and water supply, must be designed, managed, and operated so they function reliably and efficiently even in the case of an extreme event. Nevertheless, the way infrastructure system services meet societal needs and the way disruptions of those services impair the ability to meet societal needs are not well understood. In this project, we will define the societal objectives for infrastructure system performance in earthquakes and develop a method to comprehensively optimize a broad range of risk management strategies to meet them, including component design, upgrading, and repair and restoration planning. Specific project tasks include: (1) Developing a probabilistic scenario-based model of the risk of multiple infrastructure systems to earthquakes with the ability to evaluate alternative risk management strategies; (2) Integrating the complementary strengths of social media, household surveys, and economic impact analyses to empirically assess societal objectives, users’ adaptive strategies in responding to disruptions, and the relationships between them and traditional measures of system functioning; (3) Developing an optimization model to optimize risk management to meet societal objectives; and (4) Demonstrating models through a full-scale case study for electric power and water in collaboration with our partners at the Los Angeles Department of Water and Power.

image

NSF LEAP HI: Embedding Regional Hurricane Risk Management in the Life of a Community: A Computational Framework

DURATION: September 1, 2018 – August 31, 2023
RESEARCHERS: Rachel Davidson, Joseph Trainor

FUNDING: Cornell University, East Carolina University, National Science Foundation

PROJECT DESCRIPTION:
A breakthrough in disaster risk reduction will require an approach that views disasters not as abnormal events but as a regular part of a community’s evolution, and disaster risk management as inextricably interwoven with the normal activities of everyday life. In this project, a novel computational modeling framework will be developed using this approach to improve understanding of the underlying dynamics that lead to escalating regional natural disaster risk, and to support design and analysis of public policy interventions to address them. In a system-wide analysis, the Multistakeholder Disaster Risk Management (MDRM) framework will explicitly consider perspectives of and interactions among multiple key stakeholders (government, primary insurers, and homeowners), multiple diverse interventions (e.g., home strengthening, insurance, land use planning), and not just actions that are explicitly risk-focused but “risk-influential” actions as well. The MDRM computational framework will include seven interacting mathematical models representing physically-based simulation of damage, losses, and ways to strengthen homes; decision-making by each main stakeholder type including oligopolistic competition among insurers; and the changing building inventory and regional economy that provide the context. It will be developed with a full-scale application for hurricanes in North Carolina. This project promises improved understanding of the creation and management of regional natural disaster risk by, for the first time, uniting the conceptualization of disasters as part of the normal life of a community with the power of quantitative, dynamic engineering modeling of risk, decision-making, and economics. Principal Investigators: Linda Nozick, Cornell University, and Jamie Kruse, East Carolina University

image

Understanding the Relationship Between Household Decisions and Infrastructure Investment in Disaster Recovery: Superstorm Sandy

RESEARCHERS: Sue McNeil, Joseph Trainor

FUNDING: US Department of Transportation through the Center for Advanced Infrastructure and Transportation University Transportation Center at Rutgers

PROJECT DESCRIPTION:
This study uses an exploratory, multiple case study methodology to explore the most influential factors associated with household decision making in two communities, Oakwood Beach in Staten Island, NY, and Sea Bright, NJ. Both communities suffered substantial losses from the hurricane. They are also both small, coastal communities. The population of Oakwood is 12,038 and the population of Sea Bright is 1,414. They also have key differences. Oakwood is the site of a pilot project that will give homeowners 100% of their pre-Sandy home value with an additional 5% if they choose to rebuild on Staten Island. Sea Bright, on the other hand, is rebuilding in the same location. Data collection for each case study community included a survey and semi-structured, in-depth interviews with adult members of households that sustained substantial damages from Hurricane Sandy. Qualitative and quantitative analysis of survey results and interviews was used to test hypotheses identified in the literature. These results were also connected to the impact of infrastructure disruptions.

DRC RESEARCH PROJECTS: 6

FILTER BY RESEARCH AREA:
4 Climate Change | 5 Humanitarian Assistance | 6 Infrastructure Risk Management | 12 Protective Actions | 14 Public Health | 15 Response | 3 Social Vulnerability | 4 Warning and Risk Perception | CLEAR ALL

FILTER BY CLASSIFICATION:
11 Active Research | 19 Past Research | 5 Student Research | CLEAR ALL

image

Coastal Hazards, Equity, Economic Prosperity and Resilience (CHEER)

DURATION: September 1, 2022 –
RESEARCHERS: Rachel Davidson, Sarah DeYoung, Joseph Trainor, A.R. Siders[/if 449]

FUNDING: National Science Foundation

PROJECT DESCRIPTION:
The UD-led hub — Coastal Hazards, Equity, Economic prosperity and Resilience (CHEER) — is one of five NSF-funded projects announced recently as part of the agency’s Coastlines and People program, which is concentrating its research efforts to protect the natural, social and economic resources of U.S. coasts, and to help create more resilient coastal communities.

This five-year project will be led by Rachel Davidson, a core DRC faculty member and UD professor of civil and environmental engineering. Co-principal investigators include Sarah DeYoung, core DRC faculty member and associate professor of sociology and criminal justice at UD; Linda Nozick, professor and director of civil and environmental engineering at Cornell University; Brian Colle, professor and division head of atmospheric sciences at Stony Brook University; and Meghan Millea, professor of economics at East Carolina University.

READ MORE

image

Infrastructure System Damage Modeling with Data from the 2010-2011 Christchurch, New Zealand Earthquakes

RESEARCHERS: Rachel Davidson

FUNDING: Internally Funded

PROJECT DESCRIPTION:
The goal of this research is to develop new infrastructure system damage models using statistical methods that are new for this application. Specifically, we are analyzing a large, uniquely comprehensive dataset of water supply system damage from the 2010-2011 Christchurch, New Zealand earthquakes. We are comparing generalized linear models, boosted regression trees, and random forest models to see which provide the best fit to the data and the best predictive power. The research aims to improve prediction of water supply system pipeline damage in future earthquakes and improve methods for modeling lifeline damage in extreme events in general. Co-Principal Investigators: Matthew Hughes (University of Canterbury) and Misko Cubrinovski (University of Canterbury)

image

NFWF: Resilience Through Regeneration in Northeast Wilmington

DURATION: January 1, 2020 – December 31, 2020
RESEARCHERS: Jennifer Horney

FUNDING: National Fish and Wildlife Foundation

PROJECT DESCRIPTION:
The project uses innovative “resilience through regeneration” design techniques that capitalize on the reuse of vacant and abandoned properties for green infrastructure and use landscape performance measures to quantify resilience and flood risk reduction benefits. Together with hydrologic and flood resilience, social, economic, and public health performance of designs will be measured and reported to the community based on their expressed priorities for improvements to public health, recreational access, and economic opportunities and to federal, state, and local stakeholders that will be involved in future funding, permitting, and implementation of the resilient masterplan for Northeast Wilmington.

image

NSF COLLAB RSH CRISP TYPE 2: Defining and Optimizing Societal Objectives for the Earthquake Risk Management of Critical Infrastructure

DURATION: September 1, 2017 – August 31, 2021
RESEARCHERS: Rachel Davidson, James Kendra

PROJECT DESCRIPTION:
Critical infrastructure systems, such as electric power and water supply, must be designed, managed, and operated so they function reliably and efficiently even in the case of an extreme event. Nevertheless, the way infrastructure system services meet societal needs and the way disruptions of those services impair the ability to meet societal needs are not well understood. In this project, we will define the societal objectives for infrastructure system performance in earthquakes and develop a method to comprehensively optimize a broad range of risk management strategies to meet them, including component design, upgrading, and repair and restoration planning. Specific project tasks include: (1) Developing a probabilistic scenario-based model of the risk of multiple infrastructure systems to earthquakes with the ability to evaluate alternative risk management strategies; (2) Integrating the complementary strengths of social media, household surveys, and economic impact analyses to empirically assess societal objectives, users’ adaptive strategies in responding to disruptions, and the relationships between them and traditional measures of system functioning; (3) Developing an optimization model to optimize risk management to meet societal objectives; and (4) Demonstrating models through a full-scale case study for electric power and water in collaboration with our partners at the Los Angeles Department of Water and Power.

image

NSF LEAP HI: Embedding Regional Hurricane Risk Management in the Life of a Community: A Computational Framework

DURATION: September 1, 2018 – August 31, 2023
RESEARCHERS: Rachel Davidson, Joseph Trainor

FUNDING: Cornell University, East Carolina University, National Science Foundation

PROJECT DESCRIPTION:
A breakthrough in disaster risk reduction will require an approach that views disasters not as abnormal events but as a regular part of a community’s evolution, and disaster risk management as inextricably interwoven with the normal activities of everyday life. In this project, a novel computational modeling framework will be developed using this approach to improve understanding of the underlying dynamics that lead to escalating regional natural disaster risk, and to support design and analysis of public policy interventions to address them. In a system-wide analysis, the Multistakeholder Disaster Risk Management (MDRM) framework will explicitly consider perspectives of and interactions among multiple key stakeholders (government, primary insurers, and homeowners), multiple diverse interventions (e.g., home strengthening, insurance, land use planning), and not just actions that are explicitly risk-focused but “risk-influential” actions as well. The MDRM computational framework will include seven interacting mathematical models representing physically-based simulation of damage, losses, and ways to strengthen homes; decision-making by each main stakeholder type including oligopolistic competition among insurers; and the changing building inventory and regional economy that provide the context. It will be developed with a full-scale application for hurricanes in North Carolina. This project promises improved understanding of the creation and management of regional natural disaster risk by, for the first time, uniting the conceptualization of disasters as part of the normal life of a community with the power of quantitative, dynamic engineering modeling of risk, decision-making, and economics. Principal Investigators: Linda Nozick, Cornell University, and Jamie Kruse, East Carolina University

image

Understanding the Relationship Between Household Decisions and Infrastructure Investment in Disaster Recovery: Superstorm Sandy

RESEARCHERS: Sue McNeil, Joseph Trainor

FUNDING: US Department of Transportation through the Center for Advanced Infrastructure and Transportation University Transportation Center at Rutgers

PROJECT DESCRIPTION:
This study uses an exploratory, multiple case study methodology to explore the most influential factors associated with household decision making in two communities, Oakwood Beach in Staten Island, NY, and Sea Bright, NJ. Both communities suffered substantial losses from the hurricane. They are also both small, coastal communities. The population of Oakwood is 12,038 and the population of Sea Bright is 1,414. They also have key differences. Oakwood is the site of a pilot project that will give homeowners 100% of their pre-Sandy home value with an additional 5% if they choose to rebuild on Staten Island. Sea Bright, on the other hand, is rebuilding in the same location. Data collection for each case study community included a survey and semi-structured, in-depth interviews with adult members of households that sustained substantial damages from Hurricane Sandy. Qualitative and quantitative analysis of survey results and interviews was used to test hypotheses identified in the literature. These results were also connected to the impact of infrastructure disruptions.