DRC Research
DRC projects have been supported by diverse sources, including: National Science Foundation (NSF), U.S. Department of Homeland Security (DHS), U.S. Department of Health and Human Services (DHHS), U.S. Department of Defense (DOD), National Institute of Standards and Technology (NIST), Center for Disease Control and Prevention (CDC), U.S. Department of Transportation (DoT), U.S. Geological Survey (USGS), Earthquake Engineering Research Institute (EERI), Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA) Sea Grant Program, Social Science Research Council (SSRC), and Public Entity Risk Institute (PERI).
Coastal Hazards, Equity, Economic Prosperity and Resilience (CHEER)
DURATION: September 1, 2022 –
RESEARCHERS: Rachel Davidson, Sarah DeYoung, Joseph Trainor, A.R. Siders[/if 449]
FUNDING: National Science Foundation
PROJECT DESCRIPTION:
The UD-led hub — Coastal Hazards, Equity, Economic prosperity and Resilience (CHEER) — is one of five NSF-funded projects announced recently as part of the agency’s Coastlines and People program, which is concentrating its research efforts to protect the natural, social and economic resources of U.S. coasts, and to help create more resilient coastal communities.
This five-year project will be led by Rachel Davidson, a core DRC faculty member and UD professor of civil and environmental engineering. Co-principal investigators include Sarah DeYoung, core DRC faculty member and associate professor of sociology and criminal justice at UD; Linda Nozick, professor and director of civil and environmental engineering at Cornell University; Brian Colle, professor and division head of atmospheric sciences at Stony Brook University; and Meghan Millea, professor of economics at East Carolina University.
COVID-19: Community Impacts and Adaptation To Crisis: Delawareans Living With HIV/Aids
RESEARCHERS: Tricia Wachtendorf
FUNDING: Internally Funded, Delaware HIV Consortium
PROJECT DESCRIPTION:
The crisis surrounding COVID-19 impacted communities across the globe. Appreciating that disasters have differential impacts on those affected, this study examined the impact the crisis had on Delawareans living with HIV/AIDS. The study explored issues of preparedness, response, adaptation, and decision-making, among other social consequences, as well as challenges related to health, housing, finances, and support. Over 50 interviews were conducted with clients of the Delaware HIV Consortium to better understand their experiences and needs over the course of the pandemic.
DRC RESEARCH PROJECTS: 9
FILTER BY RESEARCH AREA:
4 Climate Change | 5 Humanitarian Assistance | 6 Infrastructure Risk Management | 12 Protective Actions | 14 Public Health | 15 Response | 3 Social Vulnerability | 4 Warning and Risk Perception | CLEAR ALL
FILTER BY CLASSIFICATION:
11 Active Research | 19 Past Research | 5 Student Research | CLEAR ALL
An Interdisciplinary Approach to Modeling Multiple Stakeholder Decision Making to Reduce Regional Natural Disaster Risk
RESEARCHERS: Rachel Davidson, Joseph Trainor
FUNDING: Department of Homeland Security, National Science Foundation
PROJECT DESCRIPTION:
The project will result in a new framework of interacting mathematical models that can be used to better understand, design, and evaluate government natural disaster risk management policies, such as providing funds to help homeowners strengthen their homes or requiring homeowners to buy natural disaster insurance. By supporting improved design and evaluation of public policies, the project will help the country better manage its risk. By considering the individual, sometimes competing stakeholder points-of-view up front, as an integral part of the analysis, the new framework will make it easier to identify those win-win system-wide solutions that are most likely to be put into action and to be effective. Engaging representatives of the relevant government agencies, and insurance and home building industries as partners at the beginning of the project will help ensure that the research offers usable results that can be put into practice as quickly and effectively as possible.
Co-Principal Investigators: Jamie Kruse, East Carolina University; Linda Nozick, Cornell University
Coastal Hazards, Equity, Economic Prosperity and Resilience (CHEER)
DURATION: September 1, 2022 –
RESEARCHERS: Rachel Davidson, Sarah DeYoung, Joseph Trainor, A.R. Siders
FUNDING: National Science Foundation
PROJECT DESCRIPTION:
The UD-led hub — Coastal Hazards, Equity, Economic prosperity and Resilience (CHEER) — is one of five NSF-funded projects announced recently as part of the agency’s Coastlines and People program, which is concentrating its research efforts to protect the natural, social and economic resources of U.S. coasts, and to help create more resilient coastal communities.
This five-year project will be led by Rachel Davidson, a core DRC faculty member and UD professor of civil and environmental engineering. Co-principal investigators include Sarah DeYoung, core DRC faculty member and associate professor of sociology and criminal justice at UD; Linda Nozick, professor and director of civil and environmental engineering at Cornell University; Brian Colle, professor and division head of atmospheric sciences at Stony Brook University; and Meghan Millea, professor of economics at East Carolina University.
DRC COVID-19: Community Impacts and Adaptation to Crisis
RESEARCHERS: Tricia Wachtendorf, James Kendra
FUNDING: Internally Funded
PROJECT DESCRIPTION:
The crisis surrounding COVID-19 impacted communities across the globe. This effort examined the impact of the crisis on community in the early stages of the pandemic, exploring issues of preparedness, response, adaptation, and decision-making, among other social consequences. A concentric approach to data collection began with the impact of the crisis on an institution of higher education – the University of Delaware and its population. The examination spanned outward to include others who have relationships with the institution (e.g. community members, businesses, faith-based organizations, agencies, among others). We then circle back to those involved with the community around the core institution, to examine in greater depth core questions around impact, decision-making, and adaptation under crisis. Several hundred in-depth interviews were conducted with people impacted by the crisis, with the potential to follow up with participants at a later date.
HAZARDS SEES TYPE 2: Dynamic Integration of Natural, Human, and Infrastructure Systems for Hurricane Evacuation and Sheltering
RESEARCHERS: Rachel Davidson, Tricia Wachtendorf
FUNDING: National Science Foundation
PROJECT DESCRIPTION:
We are developing a new computational framework to support hurricane evacuation management. The framework, called the Integrated Scenario-based Evacuation (ISE), explicitly represents uncertainty in hurricane evolution and can be used to support robust, adaptive, and repeated decision-making. The hazard is represented with an ensemble of probabilistic hurricane scenarios, population behavior with a dynamic decision model, and traffic with a dynamic user equilibrium model. Components are integrated in a multi-stage stochastic program to provide a tree of evacuation order recommendations and an evaluation of the risk and travel time performance for that solution. The recommendations advance the state-of-the-art because: (1) they are based on an integrated hazard assessment that includes the effects of storm surge, wind waves, tides, river discharge, inland flooding, and wind; (2) explicitly balance competing objectives of minimizing risk and travel time; (3) offer a well-hedged solution robust under the range of hurricane evolutions; and (4) leverage the substantial value of decreasing uncertainty during an event. The first version has been developed and demonstrated in North Carolina. Additional PIs: R. Kolar, Oklahoma, B. Blanton, UNC Chapel Hill, L. Nozick, Cornell, and B.Colle Stony Brook
Infrastructure System Damage Modeling with Data from the 2010-2011 Christchurch, New Zealand Earthquakes
RESEARCHERS: Rachel Davidson
FUNDING: Internally Funded
PROJECT DESCRIPTION:
The goal of this research is to develop new infrastructure system damage models using statistical methods that are new for this application. Specifically, we are analyzing a large, uniquely comprehensive dataset of water supply system damage from the 2010-2011 Christchurch, New Zealand earthquakes. We are comparing generalized linear models, boosted regression trees, and random forest models to see which provide the best fit to the data and the best predictive power. The research aims to improve prediction of water supply system pipeline damage in future earthquakes and improve methods for modeling lifeline damage in extreme events in general. Co-Principal Investigators: Matthew Hughes (University of Canterbury) and Misko Cubrinovski (University of Canterbury)
NSF COLLAB RSH CRISP TYPE 2: Defining and Optimizing Societal Objectives for the Earthquake Risk Management of Critical Infrastructure
DURATION: September 1, 2017 – August 31, 2021
RESEARCHERS: Rachel Davidson, James Kendra
PROJECT DESCRIPTION:
Critical infrastructure systems, such as electric power and water supply, must be designed, managed, and operated so they function reliably and efficiently even in the case of an extreme event. Nevertheless, the way infrastructure system services meet societal needs and the way disruptions of those services impair the ability to meet societal needs are not well understood. In this project, we will define the societal objectives for infrastructure system performance in earthquakes and develop a method to comprehensively optimize a broad range of risk management strategies to meet them, including component design, upgrading, and repair and restoration planning. Specific project tasks include: (1) Developing a probabilistic scenario-based model of the risk of multiple infrastructure systems to earthquakes with the ability to evaluate alternative risk management strategies; (2) Integrating the complementary strengths of social media, household surveys, and economic impact analyses to empirically assess societal objectives, users’ adaptive strategies in responding to disruptions, and the relationships between them and traditional measures of system functioning; (3) Developing an optimization model to optimize risk management to meet societal objectives; and (4) Demonstrating models through a full-scale case study for electric power and water in collaboration with our partners at the Los Angeles Department of Water and Power.
NSF HDBE: Collaborative Research: Leveraging Massive Smartphone Location Data to Improve Understanding and Prediction of Behavior in Hurricanes
DURATION: September 1, 2020 – August 31, 2023
RESEARCHERS: Rachel Davidson, Tricia Wachtendorf, Sarah DeYoung
FUNDING: National Science Foundation
PROJECT DESCRIPTION:
In this project, newly available anonymous smartphone location data will be used to dramatically improve understanding of how people behave during hurricanes (e.g., how many people will evacuate, when, how, from where, and to where). In this project, we will promote the progress of science by capitalizing on the availability of a new type of data—anonymous location information from smartphones—to make a leap forward in understanding and predicting the behavior of the population during hurricane evacuations. The project will advance national welfare and benefit society by substantially improving the ability to manage future evacuations. During a hurricane, officials make many highly consequential decisions, including issuing official evacuation orders, messaging the public, opening shelters, staging materials, and staff, implementing special traffic plans, executing support for vehicle-less populations, and preparing to undertake rescues. All of these depend directly on how many people are expected to evacuate, when, how, from where, and to where. By providing a more accurate and nuanced prediction of population behavior during hurricanes, this project will enable officials to make those decisions in a more informed and effective way. Our practitioner partners from the Federal Emergency Management Agency (FEMA) and the Florida and North Carolina state emergency management agencies will also help us share findings with the larger emergency management community. Combining the power of the new data with domain expertise based on traditional survey and interview data will advance the science.
NSF LEAP HI: Embedding Regional Hurricane Risk Management in the Life of a Community: A Computational Framework
DURATION: September 1, 2018 – August 31, 2023
RESEARCHERS: Rachel Davidson, Joseph Trainor
FUNDING: Cornell University, East Carolina University, National Science Foundation
PROJECT DESCRIPTION:
A breakthrough in disaster risk reduction will require an approach that views disasters not as abnormal events but as a regular part of a community’s evolution, and disaster risk management as inextricably interwoven with the normal activities of everyday life. In this project, a novel computational modeling framework will be developed using this approach to improve understanding of the underlying dynamics that lead to escalating regional natural disaster risk, and to support design and analysis of public policy interventions to address them. In a system-wide analysis, the Multistakeholder Disaster Risk Management (MDRM) framework will explicitly consider perspectives of and interactions among multiple key stakeholders (government, primary insurers, and homeowners), multiple diverse interventions (e.g., home strengthening, insurance, land use planning), and not just actions that are explicitly risk-focused but “risk-influential” actions as well. The MDRM computational framework will include seven interacting mathematical models representing physically-based simulation of damage, losses, and ways to strengthen homes; decision-making by each main stakeholder type including oligopolistic competition among insurers; and the changing building inventory and regional economy that provide the context. It will be developed with a full-scale application for hurricanes in North Carolina. This project promises improved understanding of the creation and management of regional natural disaster risk by, for the first time, uniting the conceptualization of disasters as part of the normal life of a community with the power of quantitative, dynamic engineering modeling of risk, decision-making, and economics. Principal Investigators: Linda Nozick, Cornell University, and Jamie Kruse, East Carolina University
NSF SCC-CIVIC-PG TRACK B: An Integrated Scenario-Based Hurricane Evacuation Management Tool to Support Community Preparedness
DURATION: February 1, 2021 – May 31, 2021
RESEARCHERS: Rachel Davidson, Tricia Wachtendorf
FUNDING: National Science Foundation
PROJECT DESCRIPTION:
As a hurricane approaches, emergency managers must determine when and where to issue official evacuation orders. It requires integrating large amounts of uncertain, changing information to make consequential decisions in a short time frame under pressure, and the stakes are high. An opportunity exists to leverage recent research—in particular, the Integrated Scenario-based Evacuation (ISE) tool—to help meet that challenge. This team designed the ISE tool to be run for a particular hurricane as it approaches the U.S. When run at a point in time, it generates a set of contingency plans and defines the circumstances under which to implement each, depending on how the hurricane evolves. Each plan includes recommendations about whether or not to issue an evacuation order for each geographic evacuation zone, and if so, when. While the new technology has promise, moving from research to practice brings its own challenges. The objectives of Stage 1, therefore, are to: (1) Determine how the new tool and its output can support emergency managers’ natural decision-making process; (2) Conduct a needs assessment for the tool; and (3) Advance understanding of community innovation in disaster management. The Stage 2 objective is to implement an operational prototype of the ISE-based decision support tool for North Carolina. The emergency manager partners will ensure the tool is of practical use; the researchers will ensure it reflects the best science, and the industry partner will ensure its impact is sustainable by hosting it on their platform.
DRC RESEARCH PROJECTS: 36
FILTER BY RESEARCH AREA:
4 Climate Change | 5 Humanitarian Assistance | 6 Infrastructure Risk Management | 12 Protective Actions | 14 Public Health | 15 Response | 3 Social Vulnerability | 4 Warning and Risk Perception | CLEAR ALL
FILTER BY CLASSIFICATION:
11 Active Research | 19 Past Research | 5 Student Research | CLEAR ALL
UD GUR: Infant Feeding in Emergencies: Measuring Changes During Natural Hazards in the United States
DURATION: June 1, 2020 – May 31, 2022
RESEARCHERS: Sarah DeYoung
FUNDING: UD General University Research (GUR)
PROJECT DESCRIPTION:
The research aim for this project is to identify the ways in which hazards and disasters impact infant feeding. Specifically, while pre- and post-data from previous work indicates that disaster evacuations reduce rates of breastfeeding (DeYoung, Chase, & Pensa-Branco, 2018) and may increase use of infant formula, additional research is needed to clarify the mechanisms for this change, and whether the reduction in breastfeeding occurs in multiple hazards contexts, and to what extent these findings are generalizable to the broader populations impacted by disasters. Specifically, the DeYoung et al., 2018 study was conducted among a non-random sample of evacuees from the 2016 Fort McMurray wildfire. Caregivers indicated challenges with access to adequate infant feeding supplies for breastfeeding, bottle-feeding, and mixed feeding. Additionally, qualitative data after the Nepal earthquake (DeYoung, Suji, & Southall, 2018) suggests that choices about infant feeding among families displaced by the earthquake were influenced by breastmilk substitutes distributed by nongovernmental groups (NGO’s). However, additional research is needed to clarify the effect of disasters on infant feeding. Identifying inhibiting factors for sustained breastfeeding and safe artificial feeding during and after disasters can inform new interventions and policies used in mass care and evacuation scenarios. This research will employ a mixed-methods approach to identifying the key variables for bolstering safe infant feeding in emergencies.
UDRF: Infant Feeding in Emergencies: Measuring Changes During Natural Hazards in the United States
DURATION: June 1, 2020 – May 31, 2022
RESEARCHERS: Sarah DeYoung
FUNDING: UD Research Foundation (UDRF)
PROJECT DESCRIPTION:
The research aims for this project are to identify the ways in which hazards and disasters impact infant feeding in the United States and to identify key variables for bolstering safe infant feeding in emergencies. Specifically, while data from previous work indicates that disaster evacuations reduce rates of breastfeeding (DeYoung, Chase, & Pensa-Branco, 2018) and may increase use of infant formula, additional research is needed to clarify the mechanisms for this change, and whether the reduction in breastfeeding occurs in multiple hazards contexts, and to what extent these findings are generalizable to the broader populations impacted by disasters. Specifically, the DeYoung et al., 2018 study was conducted among a non-random sample of evacuees from the 2016 Fort McMurray wildfire in Canada. Caregivers indicated challenges with access to adequate space for breastfeeding in emergency shelters and a lack of access to supplies for safe bottle-feeding. Additionally, findings from qualitative research after the Nepal (Gorkha) earthquake (DeYoung, Suji, & Southall, 2018) suggest that choices about infant feeding among families displaced by the earthquake were influenced by breastmilk substitutes distributed by nongovernmental groups (NGO’s). Additional research is needed to clarify the effect of disasters on infant feeding. Identifying inhibiting factors for sustained breastfeeding and safe artificial feeding during and after disasters can inform new interventions and policies used in mass care and evacuation scenarios
UM/NSF CRISP TYPE 2: Interdependencies in Community Resilience (ICOR): A Simulation Framework
DURATION: September 1, 2016 – August 31, 2021
RESEARCHERS: Ben Aguirre
FUNDING: National Science Foundation, University of Michigan
PROJECT DESCRIPTION:
Natural hazards engineering, and disaster science more broadly, have evolved into a multitude of highly specialized disciplines, each dedicated to handling a subset of the overall challenge of mitigating the effects of natural hazards. While progress in each discipline has varied by the historical size of its research community and amount of resources devoted to it, a common observation is that computational research is widespread in all fields. By exploiting this state of affairs and using computational modeling as a common language to link disparate disciplines, this project’s proposed computational platform will open the door for researchers to collaborate in new ways. Users will be able to connect their individual computational models (simulators) to the proposed integrative platform and simultaneously run them with simulators from other disciplines to explore the complex interactions that take place between the different systems of society during and after natural hazard disasters. The ability to seamlessly interface with other models with minimal effort will foster entirely new collaborations between researchers who do not traditionally work together, enabling as-of- yet unimagined studies within and contributions to the natural hazards engineering and disaster science fields. The new understanding that will result from this effort will shed light on the complex interactions that take place between policy, casualty rates and community resilience and clarify to what extent policy changes need to be implemented to significantly influence a community’s level of resilience to natural disasters. The work will also have a substantial impact on the development of human resources. By bridging civil engineering, social science and computer science, the students who will work on this project will attain a truly multi-disciplinary education at the intersection of these disciplines. Co-Principal Investigator: Sherif El-Tawil, Professor and Associate Chair, Dept. of Civil & Environmental Engineering, University of Michigan
Understanding the Relationship Between Household Decisions and Infrastructure Investment in Disaster Recovery: Superstorm Sandy
RESEARCHERS: Sue McNeil, Joseph Trainor
FUNDING: US Department of Transportation through the Center for Advanced Infrastructure and Transportation University Transportation Center at Rutgers
PROJECT DESCRIPTION:
This study uses an exploratory, multiple case study methodology to explore the most influential factors associated with household decision making in two communities, Oakwood Beach in Staten Island, NY, and Sea Bright, NJ. Both communities suffered substantial losses from the hurricane. They are also both small, coastal communities. The population of Oakwood is 12,038 and the population of Sea Bright is 1,414. They also have key differences. Oakwood is the site of a pilot project that will give homeowners 100% of their pre-Sandy home value with an additional 5% if they choose to rebuild on Staten Island. Sea Bright, on the other hand, is rebuilding in the same location. Data collection for each case study community included a survey and semi-structured, in-depth interviews with adult members of households that sustained substantial damages from Hurricane Sandy. Qualitative and quantitative analysis of survey results and interviews was used to test hypotheses identified in the literature. These results were also connected to the impact of infrastructure disruptions.
USDA: Strengthening Local, Regional, and National Emergency Poultry Disease Response
DURATION: January 1, 2020 – December 31, 2020
RESEARCHERS: Jennifer Horney
FUNDING: U.S. Department of Agriculture, National Animal Disease Preparedness and Response Program
PROJECT DESCRIPTION:
This project enhances local, regional, and national emergency poultry disease response. Timeliness is essential to control fast-moving diseases such as avian influenza or Newcastle disease. Local and regional responders can provide an initial capacity prior to mobilization of national level resources such as National Veterinary Stockpile equipment and contractors. On the Delmarva Peninsula, emergency poultry diseases are managed collaboratively between states and agencies and utilize a three-part model in which government, industry, and academia come together to save poultry. This project will strengthen response and enhance teamwork through mutual training in depopulation, epidemiology training on agriculturally important animal diseases; grower training on expectations and roles during an emergency; and grower and industry-oriented mass disposal training.
Using Information at Different Spatial Scales to Estimate Demand to Support Asset Management Decision Making
RESEARCHERS: Sue McNeil, Joseph Trainor
FUNDING: Center for Advanced Infrastructure and Transportation
PROJECT DESCRIPTION:
The focus of this project is to understand how diverse, large data sets support asset management decision-making post disaster. In particular, the focus is on integrating sensor, survey, demographic, vulnerability and condition data related to the supporting infrastructure, the community, and households.